Во вложениях схема и фото 10 ГГц трансвертера. Основной задачей было изготовить трансвертер, работающий на половинной частоте гетеродина. Причина - если изготовить гетеродин 5 ГГц диапазона относительно несложно, то далее умножение + усиление... гетеродин неоправданно обрастает дополнительными каскадами, что дополнительно еще сказывается на его качестве. Прототипы в сети есть. Например 10 ГГц трансвертер F1JGP
http://www.vhfdx.ru/faylyi/view-details/shemyi-i-opisaniya/transverter-na-3sm-f1jgp и масса конструкций В.Т.Полякова (RA3AAE). Трансвертер изготовлен на плате из FR4 толщиной 0,5мм размером 110х50мм. Основные СВЧ р/э трансвертера – транзисторы BFU725, BFU730 (можно обойтись одним типом) + 2 шт любые маломощные полевые транзисторы (NExxx, ATFxxx, MGFxxx), используемые в аппаратуре этого диапазона. Транзисторы BFU725, BFU730 имеют Ft = 55 GHz, выполнены по 110 GHz silicon germanium technology и если сравнить их параметры то, например по такому, как G – отличие на уровне «ловли блох», по Nf - BFU725 несколько лучше чем BFU730 (на том же уровне), а по Ptot (135/200 mW) и связанному с этим параметром P (1dB) = (8/12,5 dBm для 5,8 GHz) – транзисторы BFU730 ощутимо лучше. У меня на схеме указаны транзисторы именно тех типов (по каскадам), которые я устанавливал. С учетом вышеизложенного – возможна вариация (замена), просто устанавливал пропорционально своему наличию. Но, например в тракте ТХ (выходной каскад) нет смысла устанавливать 2х BFU725, когда они заменяются одним BFU730. В трансвертере применены СМД р/э типоразмера 0805, за исключением: резисторы 100 Ом – 2 шт (мосты РА) и разделительные конденсаторы (1…2…3 номинала, можно обойтись и одним в 1 или 1,5 пФ) типоразмера 0603. По технологичности пайки, учитывая их количество, если есть хотя бы какие-то навыки работы с 0805 – вполне выполнимая задача, не сравнить с монтажом 0402 (а приходилось и такие паять).
На входе трансвертера 2х каскадный УВЧ, затем баночный фильтр, затем еще каскад УВЧ и далее смеситель. В качестве 180 град фазовращателя применяется 6/4L кольцевой мост. В «холодную» точку моста подается входной сигнал с УВЧ, в другую «холодную» точку – напряжение на затворы транзисторов. При проверке смесителя у меня в первую очередь были сомнения насколько нормально будет работать смеситель именно в плане подачи сигнала 10 ГГц по относительно длинному пути 5 ГГц кольцевого моста. Для этого я, не собирая УВЧ впаял короткий вертикальный штырь (зонд) длиной 7…8 мм в центр моста (точка подключения С7 этой схемы) и попытался принять маячок. Могу сказать – был очень удивлен результатом, маячок пришлось уносить в другую комнату. Предварительно я установил ток транзисторов в несколько мА, затем подстроил на максимум. Результат следующий: оптимальный режим транзистора (-ов – 2шт) 1,6…1,8В/3,5…4мА. Этот ток – от суммарного воздействия Ug и напряжения гетеродина. При отключении гетеродина ток транзисторов 1мА. Мощность гетеродина +3…5 дБм. Режим очень хорошо определяется по приему маячка, но даже и без приема маячка ощущается прирост шумов при настройке -Ug в оптимальный режим преобразования частоты. Далее, собрал 3-й каскад УВЧ и перенес зонд на его вход (не подключая банку тракта RX) – увидел работу каскада УВЧ. В дальнейшем при проверке всех каскадов я получал прибавку в среднем по 1,5…2 балла по S-метру от работы каждого каскада. Это совпадает с данными Даташита транзистора. "Банка легко настраивается на слух и показаниям S-метра. Первоначально (из рисунка платы и фото видно) планировалось применение 3-х каскадного входного УВЧ, пришлось один убрать. Появились проблемы. При проектировании схемы я чувствовал, что это уже явный «перебор» с таким количеством, но все же решил рискнуть.
В режиме передачи напряжение питания смесителя снимается, он переводится в режим пассивного преобразователя частоты параллельного типа. Настройку тракта производил следующим образом:
- трансвертер остается в режиме RX, провод питания УВЧ снимается и переносится для питания тракта ТХ.
- затем банки настраиваются на удвоенную частоту гетеродина (у меня 10224 МГц). Смеситель довольно эффективно работает в режиме удвоителя, это проблем не вызывает. При необходимости можно подстроить режим напряжением на затворах (он отличается от режима смесителя частоты).
После этого схема восстанавливается и далее все по классике – подаем на вход сигнал ТХ ПЧ и настройкой банок процесс завершается. На схеме я нарисовал диаграмму настройки банок (для ПЧ 144 МГц): для винта М3 (шаг резьбы 0,5мм) это будет (условно) – минус 10 минут (приблизительно 60 град) от настройки на частоту гетеродина. Соответственно для ПЧ 435 МГц это будет приблизительно – минус полчаса (или 180 град). Это и вся настройка. Был второй раз удивлен – мощность была получше, чем в режиме удвоителя. При этом можно отметить абсолютную устойчивость всего тракта ТХ. Вообще – это смеситель уже среднего уровня мощности (теоретически, до разрушения транзисторов можно подавать на него порядка 250…300 мВт). При желании несложно сделать и большого уровня мощности. Далее проконтролировал выход частотомером 10368 МГц. Простым индикатором остатка LO я не видел. Сейчас все заканчиваю с монтажом, сделаю точные измерения. Просто (на фото видно) на выходе ТХ разъем не установлен. При разводке платы не стал его выводить на 3-ю боковую сторону – это накладывает ограничения при общем монтаже трансвертера. Оставил место для установки фланцевого разъема (припаивается к фольге платы), но возможно не буду и его устанавливать – может быть прямо запаяю кабель в плату. Сейчас на выходе трансвертера припаян нагрузочный резистор 51 Ом. Также скорректирую схему и ПП – необходимо кое-где убрать «критические» зазоры и сделать коррекцию с учетом удаления одного каскада УВЧ RX. 73!